Real-time surveillance and response system for Ebola and other emerging infections

How to Cite

MacDonald, P. D., Cressman, G., McKay, M., Loo, S., McClure, E., & MacGuire, E. (2017). Real-time surveillance and response system for Ebola and other emerging infections. Online Journal of Public Health Informatics, 9(1).


ObjectiveWe will describe a real-time mobile surveillance and casemanagement system designed to organize data collected bymultiple officers about cases and their contacts. We will discuss thissurveillance system and its application for Ebola and other infectiousdiseases in the Democratic Republic of the Congo (DRC) and othersimilar settings. We will review the technology, results, challenges,lessons-learned, and applicability to other contexts.IntroductionImproving surveillance and response is a critical component ofthe Global Health Security Agenda. While it is impossible to predictwhere the next Ebola outbreak will occur, it is very likely that anotheroutbreak will occur in the DRC. Of the 20 known outbreaks, 7 haveoccurred in the DRC, one as recently as 2014. To rapidly detectand respond to an Ebola outbreak, we sought to develop a real-timesurveillance and response system for use in DRC and similar settings.RTI International developed Coconut Surveillance mobile software,which is currently used for real-time malaria surveillance andresponse in Zanzibar, Africa, where malaria elimination efforts areunderway. We took this system and adapted it for Ebola as a possibletool for surveillance and response to Ebola and other (re)emergingdiseases. Plans include pilot testing functionality at clinical sites inDRC, where surveillance infrastructure is limited at the local level.Coconut Surveillance is a mobile disease surveillance and rapidresponse system currently used for malaria elimination activities.It receives suspected positive case alerts from the field via mobilephones and uses mobile software to guide surveillance officersthrough a follow-up process. Coconut Surveillance runs on Androidmobile devices that are used to coordinate work in the field as well asprovide decision support during data collection and case management.In addition to standard case information, the GPS coordinates ofthe case’s household are captured as well as malaria status of allhousehold members. Data are collected and accessed off-line, and aresynchronized with a shared database when Internet connectivity isavailable. This tool has been used successfully in Zanzibar for morethan three years and has been recognized as one of the most advancedapplications of its kind.MethodsWe adapted the Coconut Surveillance system for Ebolasurveillance and response, and expanded the system for use with othercommunicable diseases. With a near real-time outbreak detectionsystem for Ebola, we may reduce the response time and contain anoutbreak faster. Using a cloud-based data repository, the modifiedCoconut System, known as Coconut Plus, also has the added value ofcase and case-contacts specific information sharing in real-time withthe national, provincial, and district level public health authorities,who would have convenient and secure access to case and contactinformation via the Internet. The software modifications to theCoconut System have been informed by testing and stakeholderfeedback.ResultsWe have developed Coconut Plus around the Coconut softwarearchitecture, which allows the team to quickly develop specificworkflows and applications, such as contact tracing, on top of a solidand well-supported base. Additionally, the adaptation was structuredto accommodate the build-out of multiple diseases, and is uniquelyhelpful for diseases that require tracking many contacts. We weregranted access in DRC to test interoperability with DHIS 2, the mostwidely used health information system software in Ebola effectedcountries. Coconut Plus is now using the DHIS 2 organizationalhierarchy definition, which means that organizational hierarchy(including information on administrative units and health carefacilities) can be exported directly from DHIS 2 to Coconut Plus.Stakeholder feedback on the usability and feasibility of the adaptedsystem has been enthusiastic, and stressed the need for additionalresources to make a pilot successful, including mobile phones andimproved mobility of surveillance staff in the field. The followingscreencast provides an overview of the application: Surveillance Plus solves an absence of a real-time mobiledecision support disease surveillance and response system that can beused for Ebola and other infectious diseases in countries with limitedsurveillance infrastructure. More broadly, this system could also beused for many communicable diseases that require contact tracing andan urgent outbreak response in environments that require rapid scaleup of a distributed surveillance, rapid response, and case managementsystem.
Authors own copyright of their articles appearing in the Online Journal of Public Health Informatics. Readers may copy articles without permission of the copyright owner(s), as long as the author and OJPHI are acknowledged in the copy and the copy is used for educational, not-for-profit purposes. Share-alike: when posting copies or adaptations of the work, release the work under the same license as the original. For any other use of articles, please contact the copyright owner. The journal/publisher is not responsible for subsequent uses of the work, including uses infringing the above license. It is the author's responsibility to bring an infringement action if so desired by the author.