Detection of Patients with Influenza Syndrome Using Machine-Learning Models Learned from Emergency Department Reports
PDF

How to Cite

Lopez Pineda, A., Tsui, F.-C., Visweswaran, S., & Cooper, G. F. (2013). Detection of Patients with Influenza Syndrome Using Machine-Learning Models Learned from Emergency Department Reports. Online Journal of Public Health Informatics, 5(1). https://doi.org/10.5210/ojphi.v5i1.4446

Abstract

Information available in ED reports has the potential to improve detection of syndromic diseases. Our goal is to provide a machine-learning model characterized by improved predictive accuracy of influenza syndrome. Seven machine-learning algorithms (K2-BN, NB, EBMC, SVM, LR, ANN, RF) for the construction of models were used. Our dataset correspond to 40853 ED cases (67% training, 33% testing). The measurements used were AUROC, calibration and statistical significance testing. The results show high AUROCs with no significant difference between the algorithms and the expert model. EBMC is the most general algorithms.
https://doi.org/10.5210/ojphi.v5i1.4446
PDF
Authors own copyright of their articles appearing in the Online Journal of Public Health Informatics. Readers may copy articles without permission of the copyright owner(s), as long as the author and OJPHI are acknowledged in the copy and the copy is used for educational, not-for-profit purposes. Share-alike: when posting copies or adaptations of the work, release the work under the same license as the original. For any other use of articles, please contact the copyright owner. The journal/publisher is not responsible for subsequent uses of the work, including uses infringing the above license. It is the author's responsibility to bring an infringement action if so desired by the author.